New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rexbidva | GIF version |
Description: Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 9-Mar-1997.) |
Ref | Expression |
---|---|
ralbidva.1 | ⊢ ((φ ∧ x ∈ A) → (ψ ↔ χ)) |
Ref | Expression |
---|---|
rexbidva | ⊢ (φ → (∃x ∈ A ψ ↔ ∃x ∈ A χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . 2 ⊢ Ⅎxφ | |
2 | ralbidva.1 | . 2 ⊢ ((φ ∧ x ∈ A) → (ψ ↔ χ)) | |
3 | 1, 2 | rexbida 2630 | 1 ⊢ (φ → (∃x ∈ A ψ ↔ ∃x ∈ A χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∈ wcel 1710 ∃wrex 2616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-rex 2621 |
This theorem is referenced by: 2rexbiia 2649 2rexbidva 2656 rexeqbidva 2823 phidisjnn 4616 phialllem1 4617 dfimafn 5367 funimass4 5369 fconstfv 5457 isomin 5497 f1oiso 5500 |
Copyright terms: Public domain | W3C validator |