New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  reximdva0 Unicode version

Theorem reximdva0 3561
 Description: Restricted existence deduced from non-empty class. (Contributed by NM, 1-Feb-2012.)
Hypothesis
Ref Expression
reximdva0.1
Assertion
Ref Expression
reximdva0
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem reximdva0
StepHypRef Expression
1 n0 3559 . . 3
2 reximdva0.1 . . . . . . 7
32ex 423 . . . . . 6
43ancld 536 . . . . 5
54eximdv 1622 . . . 4
65imp 418 . . 3
71, 6sylan2b 461 . 2
8 df-rex 2620 . 2
97, 8sylibr 203 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 358  wex 1541   wcel 1710   wne 2516  wrex 2615  c0 3550 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-rex 2620  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-dif 3215  df-nul 3551 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator