NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  neq0 Unicode version

Theorem neq0 3561
Description: A nonempty class has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
neq0
Distinct variable group:   ,

Proof of Theorem neq0
StepHypRef Expression
1 df-ne 2519 . 2
2 n0 3560 . 2
31, 2bitr3i 242 1
Colors of variables: wff setvar class
Syntax hints:   wn 3   wb 176  wex 1541   wceq 1642   wcel 1710   wne 2517  c0 3551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-nul 3552
This theorem is referenced by:  eq0  3565  ralidm  3654  snprc  3789  pwpw0  3856  sssn  3865  pwsnALT  3883  uni0b  3917  nndisjeq  4430  isomin  5497  erdisj  5973
  Copyright terms: Public domain W3C validator