NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rspc3ev Unicode version

Theorem rspc3ev 2966
Description: 3-variable restricted existentional specialization, using implicit substitution. (Contributed by NM, 25-Jul-2012.)
Hypotheses
Ref Expression
rspc3v.1
rspc3v.2
rspc3v.3
Assertion
Ref Expression
rspc3ev
Distinct variable groups:   ,   ,   ,   ,,,   ,,   ,   ,   ,,   ,,,
Allowed substitution hints:   (,,)   (,)   (,)   (,)   ()   (,)   (,)   ()

Proof of Theorem rspc3ev
StepHypRef Expression
1 simpl1 958 . 2
2 simpl2 959 . 2
3 rspc3v.3 . . . 4
43rspcev 2956 . . 3
543ad2antl3 1119 . 2
6 rspc3v.1 . . . 4
76rexbidv 2636 . . 3
8 rspc3v.2 . . . 4
98rexbidv 2636 . . 3
107, 9rspc2ev 2964 . 2
111, 2, 5, 10syl3anc 1182 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wa 358   w3a 934   wceq 1642   wcel 1710  wrex 2616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rex 2621  df-v 2862
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator