New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rexbidv | Unicode version |
Description: Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 20-Nov-1994.) |
Ref | Expression |
---|---|
ralbidv.1 |
Ref | Expression |
---|---|
rexbidv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . 2 | |
2 | ralbidv.1 | . 2 | |
3 | 1, 2 | rexbid 2634 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wrex 2616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-rex 2621 |
This theorem is referenced by: rexbii 2640 2rexbidv 2658 rexralbidv 2659 rexeqbi1dv 2817 rexeqbidv 2821 cbvrex2v 2845 rspc2ev 2964 rspc3ev 2966 ceqsrex2v 2975 sbcrexg 3122 uniiunlem 3354 eliun 3974 dfiin2g 4001 pwadjoin 4120 xpkeq2 4200 imakeq1 4225 elimakg 4258 nnc0suc 4413 opklefing 4449 opkltfing 4450 leltfintr 4459 lefinlteq 4464 ncfinraise 4482 ncfinlower 4484 nnpw1ex 4485 tfinprop 4490 tfinltfinlem1 4501 0ceven 4506 evennn 4507 oddnn 4508 evennnul 4509 oddnnul 4510 sucevenodd 4511 sucoddeven 4512 evenodddisj 4517 eventfin 4518 oddtfin 4519 nnadjoin 4521 nnadjoinpw 4522 nnpweq 4524 tfinnn 4535 vfinncvntsp 4550 vfinspsslem1 4551 vfinspss 4552 dfphi2 4570 phi11lem1 4596 0cnelphi 4598 proj1op 4601 proj2op 4602 phialllem1 4617 elima 4755 imaeq1 4938 funcnvuni 5162 fun11iun 5306 fvelrnb 5366 fvelimab 5371 fnasrn 5418 foelrn 5426 foco2 5427 abrexco 5464 funiunfv 5468 f1oiso 5500 f1oiso2 5501 clos1basesuc 5883 qseq2 5976 elqsg 5977 brlecg 6113 ovmuc 6131 ncspw1eu 6160 eqtc 6162 lec0cg 6199 sbth 6207 dflec2 6211 letc 6232 ce0t 6233 ce0lenc1 6240 tcfnex 6245 nncdiv3 6278 |
Copyright terms: Public domain | W3C validator |