NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sbc2iegf Unicode version

Theorem sbc2iegf 3113
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
sbc2iegf.1  F/
sbc2iegf.2  F/
sbc2iegf.3  F/
sbc2iegf.4
Assertion
Ref Expression
sbc2iegf  [.  ]. [.  ].
Distinct variable groups:   ,,   ,   ,   ,
Allowed substitution hints:   (,)   (,)   ()   ()   ()

Proof of Theorem sbc2iegf
StepHypRef Expression
1 simpl 443 . 2
2 simpl 443 . . . 4
3 sbc2iegf.4 . . . . 5
43adantll 694 . . . 4
5 nfv 1619 . . . 4  F/
6 sbc2iegf.2 . . . . 5  F/
76a1i 10 . . . 4  F/
82, 4, 5, 7sbciedf 3082 . . 3  [.  ].
98adantll 694 . 2  [.  ].
10 nfv 1619 . . 3  F/
11 sbc2iegf.3 . . 3  F/
1210, 11nfan 1824 . 2  F/
13 sbc2iegf.1 . . 3  F/
1413a1i 10 . 2  F/
151, 9, 12, 14sbciedf 3082 1  [.  ]. [.  ].
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wa 358   F/wnf 1544   wceq 1642   wcel 1710   [.wsbc 3047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-sbc 3048
This theorem is referenced by:  sbc2ie  3114  opelopabaf  4711
  Copyright terms: Public domain W3C validator