New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbc2iegf | GIF version |
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Dec-2013.) |
Ref | Expression |
---|---|
sbc2iegf.1 | ⊢ Ⅎxψ |
sbc2iegf.2 | ⊢ Ⅎyψ |
sbc2iegf.3 | ⊢ Ⅎx B ∈ W |
sbc2iegf.4 | ⊢ ((x = A ∧ y = B) → (φ ↔ ψ)) |
Ref | Expression |
---|---|
sbc2iegf | ⊢ ((A ∈ V ∧ B ∈ W) → ([̣A / x]̣[̣B / y]̣φ ↔ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 443 | . 2 ⊢ ((A ∈ V ∧ B ∈ W) → A ∈ V) | |
2 | simpl 443 | . . . 4 ⊢ ((B ∈ W ∧ x = A) → B ∈ W) | |
3 | sbc2iegf.4 | . . . . 5 ⊢ ((x = A ∧ y = B) → (φ ↔ ψ)) | |
4 | 3 | adantll 694 | . . . 4 ⊢ (((B ∈ W ∧ x = A) ∧ y = B) → (φ ↔ ψ)) |
5 | nfv 1619 | . . . 4 ⊢ Ⅎy(B ∈ W ∧ x = A) | |
6 | sbc2iegf.2 | . . . . 5 ⊢ Ⅎyψ | |
7 | 6 | a1i 10 | . . . 4 ⊢ ((B ∈ W ∧ x = A) → Ⅎyψ) |
8 | 2, 4, 5, 7 | sbciedf 3082 | . . 3 ⊢ ((B ∈ W ∧ x = A) → ([̣B / y]̣φ ↔ ψ)) |
9 | 8 | adantll 694 | . 2 ⊢ (((A ∈ V ∧ B ∈ W) ∧ x = A) → ([̣B / y]̣φ ↔ ψ)) |
10 | nfv 1619 | . . 3 ⊢ Ⅎx A ∈ V | |
11 | sbc2iegf.3 | . . 3 ⊢ Ⅎx B ∈ W | |
12 | 10, 11 | nfan 1824 | . 2 ⊢ Ⅎx(A ∈ V ∧ B ∈ W) |
13 | sbc2iegf.1 | . . 3 ⊢ Ⅎxψ | |
14 | 13 | a1i 10 | . 2 ⊢ ((A ∈ V ∧ B ∈ W) → Ⅎxψ) |
15 | 1, 9, 12, 14 | sbciedf 3082 | 1 ⊢ ((A ∈ V ∧ B ∈ W) → ([̣A / x]̣[̣B / y]̣φ ↔ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 Ⅎwnf 1544 = wceq 1642 ∈ wcel 1710 [̣wsbc 3047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 |
This theorem is referenced by: sbc2ie 3114 opelopabaf 4711 |
Copyright terms: Public domain | W3C validator |