New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbcan | GIF version |
Description: Distribution of class substitution over conjunction. (Contributed by NM, 31-Dec-2016.) |
Ref | Expression |
---|---|
sbcan | ⊢ ([̣A / x]̣(φ ∧ ψ) ↔ ([̣A / x]̣φ ∧ [̣A / x]̣ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex 3056 | . 2 ⊢ ([̣A / x]̣(φ ∧ ψ) → A ∈ V) | |
2 | sbcex 3056 | . . 3 ⊢ ([̣A / x]̣ψ → A ∈ V) | |
3 | 2 | adantl 452 | . 2 ⊢ (([̣A / x]̣φ ∧ [̣A / x]̣ψ) → A ∈ V) |
4 | dfsbcq2 3050 | . . 3 ⊢ (y = A → ([y / x](φ ∧ ψ) ↔ [̣A / x]̣(φ ∧ ψ))) | |
5 | dfsbcq2 3050 | . . . 4 ⊢ (y = A → ([y / x]φ ↔ [̣A / x]̣φ)) | |
6 | dfsbcq2 3050 | . . . 4 ⊢ (y = A → ([y / x]ψ ↔ [̣A / x]̣ψ)) | |
7 | 5, 6 | anbi12d 691 | . . 3 ⊢ (y = A → (([y / x]φ ∧ [y / x]ψ) ↔ ([̣A / x]̣φ ∧ [̣A / x]̣ψ))) |
8 | sban 2069 | . . 3 ⊢ ([y / x](φ ∧ ψ) ↔ ([y / x]φ ∧ [y / x]ψ)) | |
9 | 4, 7, 8 | vtoclbg 2916 | . 2 ⊢ (A ∈ V → ([̣A / x]̣(φ ∧ ψ) ↔ ([̣A / x]̣φ ∧ [̣A / x]̣ψ))) |
10 | 1, 3, 9 | pm5.21nii 342 | 1 ⊢ ([̣A / x]̣(φ ∧ ψ) ↔ ([̣A / x]̣φ ∧ [̣A / x]̣ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 = wceq 1642 [wsb 1648 ∈ wcel 1710 Vcvv 2860 [̣wsbc 3047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 |
This theorem is referenced by: inopab 4863 |
Copyright terms: Public domain | W3C validator |