NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sbceqg Unicode version

Theorem sbceqg 3153
Description: Distribute proper substitution through an equality relation. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
sbceqg  [.  ].

Proof of Theorem sbceqg
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3050 . . 3  [.  ].
2 dfsbcq2 3050 . . . . 5  [.  ].
32abbidv 2468 . . . 4  [.  ].
4 dfsbcq2 3050 . . . . 5  [.  ].
54abbidv 2468 . . . 4  [.  ].
63, 5eqeq12d 2367 . . 3  [.  ].  [.  ].
7 nfs1v 2106 . . . . . 6  F/
87nfab 2494 . . . . 5  F/_
9 nfs1v 2106 . . . . . 6  F/
109nfab 2494 . . . . 5  F/_
118, 10nfeq 2497 . . . 4  F/
12 sbab 2476 . . . . 5
13 sbab 2476 . . . . 5
1412, 13eqeq12d 2367 . . . 4
1511, 14sbie 2038 . . 3
161, 6, 15vtoclbg 2916 . 2  [.  ].  [.  ].  [.  ].
17 df-csb 3138 . . 3  [.  ].
18 df-csb 3138 . . 3  [.  ].
1917, 18eqeq12i 2366 . 2 
[.  ].  [.  ].
2016, 19syl6bbr 254 1  [.  ].
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wceq 1642  wsb 1648   wcel 1710  cab 2339   [.wsbc 3047  csb 3137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-sbc 3048  df-csb 3138
This theorem is referenced by:  sbcne12g  3155  sbceq1g  3157  sbceq2g  3159
  Copyright terms: Public domain W3C validator