New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  sbcreug Unicode version

Theorem sbcreug 3122
 Description: Interchange class substitution and restricted uniqueness quantifier. (Contributed by NM, 24-Feb-2013.)
Assertion
Ref Expression
sbcreug
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   (,)   ()   ()   (,)

Proof of Theorem sbcreug
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3049 . 2
2 dfsbcq2 3049 . . 3
32reubidv 2795 . 2
4 nfcv 2489 . . . 4
5 nfs1v 2106 . . . 4
64, 5nfreu 2785 . . 3
7 sbequ12 1919 . . . 4
87reubidv 2795 . . 3
96, 8sbie 2038 . 2
101, 3, 9vtoclbg 2915 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 176   wceq 1642  wsb 1648   wcel 1710  wreu 2616  wsbc 3046 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-reu 2621  df-v 2861  df-sbc 3047 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator