New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbcreug | GIF version |
Description: Interchange class substitution and restricted uniqueness quantifier. (Contributed by NM, 24-Feb-2013.) |
Ref | Expression |
---|---|
sbcreug | ⊢ (A ∈ V → ([̣A / x]̣∃!y ∈ B φ ↔ ∃!y ∈ B [̣A / x]̣φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq2 3050 | . 2 ⊢ (z = A → ([z / x]∃!y ∈ B φ ↔ [̣A / x]̣∃!y ∈ B φ)) | |
2 | dfsbcq2 3050 | . . 3 ⊢ (z = A → ([z / x]φ ↔ [̣A / x]̣φ)) | |
3 | 2 | reubidv 2796 | . 2 ⊢ (z = A → (∃!y ∈ B [z / x]φ ↔ ∃!y ∈ B [̣A / x]̣φ)) |
4 | nfcv 2490 | . . . 4 ⊢ ℲxB | |
5 | nfs1v 2106 | . . . 4 ⊢ Ⅎx[z / x]φ | |
6 | 4, 5 | nfreu 2786 | . . 3 ⊢ Ⅎx∃!y ∈ B [z / x]φ |
7 | sbequ12 1919 | . . . 4 ⊢ (x = z → (φ ↔ [z / x]φ)) | |
8 | 7 | reubidv 2796 | . . 3 ⊢ (x = z → (∃!y ∈ B φ ↔ ∃!y ∈ B [z / x]φ)) |
9 | 6, 8 | sbie 2038 | . 2 ⊢ ([z / x]∃!y ∈ B φ ↔ ∃!y ∈ B [z / x]φ) |
10 | 1, 3, 9 | vtoclbg 2916 | 1 ⊢ (A ∈ V → ([̣A / x]̣∃!y ∈ B φ ↔ ∃!y ∈ B [̣A / x]̣φ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 [wsb 1648 ∈ wcel 1710 ∃!wreu 2617 [̣wsbc 3047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-reu 2622 df-v 2862 df-sbc 3048 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |