New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  spOLD Unicode version

Theorem spOLD 1748
 Description: Obsolete proof of sp 1747 as of 23-Dec-2017. (Contributed by NM, 21-May-2008.) (Proof shortened by Scott Fenton, 24-Jan-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
spOLD

Proof of Theorem spOLD
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ax9v 1655 . 2
2 equcomi 1679 . . . . . . 7
3 ax-17 1616 . . . . . . 7
4 ax-11 1746 . . . . . . 7
52, 3, 4syl2im 34 . . . . . 6
6 ax9v 1655 . . . . . . 7
7 con2 108 . . . . . . . 8
87al2imi 1561 . . . . . . 7
96, 8mtoi 169 . . . . . 6
105, 9syl6 29 . . . . 5
1110con4d 97 . . . 4
1211con3i 127 . . 3
1312alrimiv 1631 . 2
141, 13mt3 171 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4  wal 1540 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746 This theorem depends on definitions:  df-bi 177  df-ex 1542 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator