New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > spOLD | GIF version |
Description: Obsolete proof of sp 1747 as of 23-Dec-2017. (Contributed by NM, 21-May-2008.) (Proof shortened by Scott Fenton, 24-Jan-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
spOLD | ⊢ (∀xφ → φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax9v 1655 | . 2 ⊢ ¬ ∀w ¬ w = x | |
2 | equcomi 1679 | . . . . . . 7 ⊢ (w = x → x = w) | |
3 | ax-17 1616 | . . . . . . 7 ⊢ (¬ φ → ∀w ¬ φ) | |
4 | ax-11 1746 | . . . . . . 7 ⊢ (x = w → (∀w ¬ φ → ∀x(x = w → ¬ φ))) | |
5 | 2, 3, 4 | syl2im 34 | . . . . . 6 ⊢ (w = x → (¬ φ → ∀x(x = w → ¬ φ))) |
6 | ax9v 1655 | . . . . . . 7 ⊢ ¬ ∀x ¬ x = w | |
7 | con2 108 | . . . . . . . 8 ⊢ ((x = w → ¬ φ) → (φ → ¬ x = w)) | |
8 | 7 | al2imi 1561 | . . . . . . 7 ⊢ (∀x(x = w → ¬ φ) → (∀xφ → ∀x ¬ x = w)) |
9 | 6, 8 | mtoi 169 | . . . . . 6 ⊢ (∀x(x = w → ¬ φ) → ¬ ∀xφ) |
10 | 5, 9 | syl6 29 | . . . . 5 ⊢ (w = x → (¬ φ → ¬ ∀xφ)) |
11 | 10 | con4d 97 | . . . 4 ⊢ (w = x → (∀xφ → φ)) |
12 | 11 | con3i 127 | . . 3 ⊢ (¬ (∀xφ → φ) → ¬ w = x) |
13 | 12 | alrimiv 1631 | . 2 ⊢ (¬ (∀xφ → φ) → ∀w ¬ w = x) |
14 | 1, 13 | mt3 171 | 1 ⊢ (∀xφ → φ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |