New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > spcgf | Unicode version |
Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 2-Feb-1997.) (Revised by Andrew Salmon, 12-Aug-2011.) |
Ref | Expression |
---|---|
spcgf.1 | |
spcgf.2 | |
spcgf.3 |
Ref | Expression |
---|---|
spcgf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcgf.2 | . . 3 | |
2 | spcgf.1 | . . 3 | |
3 | 1, 2 | spcgft 2932 | . 2 |
4 | spcgf.3 | . 2 | |
5 | 3, 4 | mpg 1548 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wal 1540 wnf 1544 wceq 1642 wcel 1710 wnfc 2477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 |
This theorem is referenced by: spcegf 2936 spcgv 2940 rspc 2950 elabgt 2983 |
Copyright terms: Public domain | W3C validator |