New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > spcimegf | Unicode version |
Description: Existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
spcimgf.1 | |
spcimgf.2 | |
spcimegf.3 |
Ref | Expression |
---|---|
spcimegf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcimgf.1 | . . . 4 | |
2 | spcimgf.2 | . . . . 5 | |
3 | 2 | nfn 1793 | . . . 4 |
4 | spcimegf.3 | . . . . 5 | |
5 | 4 | con3d 125 | . . . 4 |
6 | 1, 3, 5 | spcimgf 2933 | . . 3 |
7 | 6 | con2d 107 | . 2 |
8 | df-ex 1542 | . 2 | |
9 | 7, 8 | syl6ibr 218 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wal 1540 wex 1541 wnf 1544 wceq 1642 wcel 1710 wnfc 2477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |