NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sspr Unicode version

Theorem sspr 3870
Description: The subsets of a pair. (Contributed by NM, 16-Mar-2006.) (Proof shortened by Mario Carneiro, 2-Jul-2016.)
Assertion
Ref Expression
sspr

Proof of Theorem sspr
StepHypRef Expression
1 uncom 3409 . . . . 5
2 un0 3576 . . . . 5
31, 2eqtri 2373 . . . 4
43sseq2i 3297 . . 3
5 0ss 3580 . . . 4
65biantrur 492 . . 3
74, 6bitr3i 242 . 2
8 ssunpr 3869 . 2
9 uncom 3409 . . . . . 6
10 un0 3576 . . . . . 6
119, 10eqtri 2373 . . . . 5
1211eqeq2i 2363 . . . 4
1312orbi2i 505 . . 3
14 uncom 3409 . . . . . 6
15 un0 3576 . . . . . 6
1614, 15eqtri 2373 . . . . 5
1716eqeq2i 2363 . . . 4
183eqeq2i 2363 . . . 4
1917, 18orbi12i 507 . . 3
2013, 19orbi12i 507 . 2
217, 8, 203bitri 262 1
Colors of variables: wff setvar class
Syntax hints:   wb 176   wo 357   wa 358   wceq 1642   cun 3208   wss 3258  c0 3551  csn 3738  cpr 3739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742  df-pr 3743
This theorem is referenced by:  sstp  3871  pwpr  3884
  Copyright terms: Public domain W3C validator