| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > sstp | Unicode version | ||
| Description: The subsets of a triple. (Contributed by Mario Carneiro, 2-Jul-2016.) | 
| Ref | Expression | 
|---|---|
| sstp | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-tp 3744 | 
. . 3
 | |
| 2 | 1 | sseq2i 3297 | 
. 2
 | 
| 3 | 0ss 3580 | 
. . 3
 | |
| 4 | 3 | biantrur 492 | 
. 2
 | 
| 5 | ssunsn2 3866 | 
. . 3
 | |
| 6 | 3 | biantrur 492 | 
. . . . 5
 | 
| 7 | sspr 3870 | 
. . . . 5
 | |
| 8 | 6, 7 | bitr3i 242 | 
. . . 4
 | 
| 9 | uncom 3409 | 
. . . . . . . 8
 | |
| 10 | un0 3576 | 
. . . . . . . 8
 | |
| 11 | 9, 10 | eqtri 2373 | 
. . . . . . 7
 | 
| 12 | 11 | sseq1i 3296 | 
. . . . . 6
 | 
| 13 | uncom 3409 | 
. . . . . . 7
 | |
| 14 | 13 | sseq2i 3297 | 
. . . . . 6
 | 
| 15 | 12, 14 | anbi12i 678 | 
. . . . 5
 | 
| 16 | ssunpr 3869 | 
. . . . 5
 | |
| 17 | uncom 3409 | 
. . . . . . . . 9
 | |
| 18 | df-pr 3743 | 
. . . . . . . . 9
 | |
| 19 | 17, 18 | eqtr4i 2376 | 
. . . . . . . 8
 | 
| 20 | 19 | eqeq2i 2363 | 
. . . . . . 7
 | 
| 21 | 20 | orbi2i 505 | 
. . . . . 6
 | 
| 22 | uncom 3409 | 
. . . . . . . . 9
 | |
| 23 | df-pr 3743 | 
. . . . . . . . 9
 | |
| 24 | 22, 23 | eqtr4i 2376 | 
. . . . . . . 8
 | 
| 25 | 24 | eqeq2i 2363 | 
. . . . . . 7
 | 
| 26 | 1, 13 | eqtr2i 2374 | 
. . . . . . . 8
 | 
| 27 | 26 | eqeq2i 2363 | 
. . . . . . 7
 | 
| 28 | 25, 27 | orbi12i 507 | 
. . . . . 6
 | 
| 29 | 21, 28 | orbi12i 507 | 
. . . . 5
 | 
| 30 | 15, 16, 29 | 3bitri 262 | 
. . . 4
 | 
| 31 | 8, 30 | orbi12i 507 | 
. . 3
 | 
| 32 | 5, 31 | bitri 240 | 
. 2
 | 
| 33 | 2, 4, 32 | 3bitri 262 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-tp 3744 | 
| This theorem is referenced by: pwtp 3885 | 
| Copyright terms: Public domain | W3C validator |