Proof of Theorem sspr
Step | Hyp | Ref
| Expression |
1 | | uncom 3409 |
. . . . 5
⊢ (∅ ∪ {B,
C}) = ({B, C} ∪
∅) |
2 | | un0 3576 |
. . . . 5
⊢ ({B, C} ∪
∅) = {B,
C} |
3 | 1, 2 | eqtri 2373 |
. . . 4
⊢ (∅ ∪ {B,
C}) = {B, C} |
4 | 3 | sseq2i 3297 |
. . 3
⊢ (A ⊆ (∅ ∪ {B,
C}) ↔ A ⊆ {B, C}) |
5 | | 0ss 3580 |
. . . 4
⊢ ∅ ⊆ A |
6 | 5 | biantrur 492 |
. . 3
⊢ (A ⊆ (∅ ∪ {B,
C}) ↔ (∅ ⊆ A ∧ A ⊆ (∅ ∪ {B,
C}))) |
7 | 4, 6 | bitr3i 242 |
. 2
⊢ (A ⊆ {B, C} ↔
(∅ ⊆
A ∧
A ⊆
(∅ ∪ {B, C}))) |
8 | | ssunpr 3869 |
. 2
⊢ ((∅ ⊆ A ∧ A ⊆ (∅ ∪ {B,
C})) ↔ ((A = ∅ ∨ A = (∅ ∪ {B}))
∨ (A =
(∅ ∪ {C}) ∨ A = (∅ ∪
{B, C})))) |
9 | | uncom 3409 |
. . . . . 6
⊢ (∅ ∪ {B}) =
({B} ∪ ∅) |
10 | | un0 3576 |
. . . . . 6
⊢ ({B} ∪ ∅) =
{B} |
11 | 9, 10 | eqtri 2373 |
. . . . 5
⊢ (∅ ∪ {B}) =
{B} |
12 | 11 | eqeq2i 2363 |
. . . 4
⊢ (A = (∅ ∪
{B}) ↔ A = {B}) |
13 | 12 | orbi2i 505 |
. . 3
⊢ ((A = ∅ ∨ A = (∅ ∪ {B}))
↔ (A = ∅ ∨ A = {B})) |
14 | | uncom 3409 |
. . . . . 6
⊢ (∅ ∪ {C}) =
({C} ∪ ∅) |
15 | | un0 3576 |
. . . . . 6
⊢ ({C} ∪ ∅) =
{C} |
16 | 14, 15 | eqtri 2373 |
. . . . 5
⊢ (∅ ∪ {C}) =
{C} |
17 | 16 | eqeq2i 2363 |
. . . 4
⊢ (A = (∅ ∪
{C}) ↔ A = {C}) |
18 | 3 | eqeq2i 2363 |
. . . 4
⊢ (A = (∅ ∪
{B, C})
↔ A = {B, C}) |
19 | 17, 18 | orbi12i 507 |
. . 3
⊢ ((A = (∅ ∪
{C}) ∨
A = (∅
∪ {B, C})) ↔ (A =
{C} ∨
A = {B,
C})) |
20 | 13, 19 | orbi12i 507 |
. 2
⊢ (((A = ∅ ∨ A = (∅ ∪ {B}))
∨ (A =
(∅ ∪ {C}) ∨ A = (∅ ∪
{B, C}))) ↔ ((A
= ∅ ∨
A = {B}) ∨ (A = {C} ∨ A = {B, C}))) |
21 | 7, 8, 20 | 3bitri 262 |
1
⊢ (A ⊆ {B, C} ↔
((A = ∅
∨ A =
{B}) ∨
(A = {C} ∨ A = {B, C}))) |