![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > syl5rbbr | Unicode version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
syl5rbbr.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl5rbbr.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl5rbbr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5rbbr.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | bicomi 193 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | syl5rbbr.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | syl5rbb 249 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: sbco3 2088 sbal2 2134 dmfco 5382 fressnfv 5440 eluniima 5470 txpcofun 5804 brfullfung 5866 |
Copyright terms: Public domain | W3C validator |