NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  syl5rbbr GIF version

Theorem syl5rbbr 251
Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.)
Hypotheses
Ref Expression
syl5rbbr.1 (ψφ)
syl5rbbr.2 (χ → (ψθ))
Assertion
Ref Expression
syl5rbbr (χ → (θφ))

Proof of Theorem syl5rbbr
StepHypRef Expression
1 syl5rbbr.1 . . 3 (ψφ)
21bicomi 193 . 2 (φψ)
3 syl5rbbr.2 . 2 (χ → (ψθ))
42, 3syl5rbb 249 1 (χ → (θφ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  sbco3  2088  sbal2  2134  dmfco  5382  fressnfv  5440  eluniima  5470  txpcofun  5804  brfullfung  5866
  Copyright terms: Public domain W3C validator