| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > txpcofun | Unicode version | ||
| Description: Composition distributes over tail cross product in the case of a function. (Contributed by SF, 18-Feb-2015.) | 
| Ref | Expression | 
|---|---|
| txpcofun.1 | 
 | 
| Ref | Expression | 
|---|---|
| txpcofun | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vex 2863 | 
. . . 4
 | |
| 2 | opeqex 4622 | 
. . . 4
 | |
| 3 | 1, 2 | ax-mp 5 | 
. . 3
 | 
| 4 | dmcoss 4972 | 
. . . . . . . . . 10
 | |
| 5 | opeldm 4911 | 
. . . . . . . . . 10
 | |
| 6 | 4, 5 | sseldi 3272 | 
. . . . . . . . 9
 | 
| 7 | 6 | pm4.71ri 614 | 
. . . . . . . 8
 | 
| 8 | 7 | anbi1i 676 | 
. . . . . . 7
 | 
| 9 | anass 630 | 
. . . . . . 7
 | |
| 10 | fvex 5340 | 
. . . . . . . . . . 11
 | |
| 11 | breq1 4643 | 
. . . . . . . . . . 11
 | |
| 12 | 10, 11 | ceqsexv 2895 | 
. . . . . . . . . 10
 | 
| 13 | breq1 4643 | 
. . . . . . . . . . 11
 | |
| 14 | 10, 13 | ceqsexv 2895 | 
. . . . . . . . . 10
 | 
| 15 | 12, 14 | anbi12i 678 | 
. . . . . . . . 9
 | 
| 16 | eqcom 2355 | 
. . . . . . . . . . . . . 14
 | |
| 17 | txpcofun.1 | 
. . . . . . . . . . . . . . 15
 | |
| 18 | funbrfvb 5361 | 
. . . . . . . . . . . . . . 15
 | |
| 19 | 17, 18 | mpan 651 | 
. . . . . . . . . . . . . 14
 | 
| 20 | 16, 19 | syl5bb 248 | 
. . . . . . . . . . . . 13
 | 
| 21 | 20 | anbi1d 685 | 
. . . . . . . . . . . 12
 | 
| 22 | 21 | exbidv 1626 | 
. . . . . . . . . . 11
 | 
| 23 | opelco 4885 | 
. . . . . . . . . . 11
 | |
| 24 | 22, 23 | syl6bbr 254 | 
. . . . . . . . . 10
 | 
| 25 | 20 | anbi1d 685 | 
. . . . . . . . . . . 12
 | 
| 26 | 25 | exbidv 1626 | 
. . . . . . . . . . 11
 | 
| 27 | opelco 4885 | 
. . . . . . . . . . 11
 | |
| 28 | 26, 27 | syl6bbr 254 | 
. . . . . . . . . 10
 | 
| 29 | 24, 28 | anbi12d 691 | 
. . . . . . . . 9
 | 
| 30 | 15, 29 | syl5rbbr 251 | 
. . . . . . . 8
 | 
| 31 | 30 | pm5.32i 618 | 
. . . . . . 7
 | 
| 32 | 8, 9, 31 | 3bitrri 263 | 
. . . . . 6
 | 
| 33 | opelco 4885 | 
. . . . . . 7
 | |
| 34 | 19.41v 1901 | 
. . . . . . . 8
 | |
| 35 | funbrfv 5357 | 
. . . . . . . . . . . 12
 | |
| 36 | 17, 35 | ax-mp 5 | 
. . . . . . . . . . 11
 | 
| 37 | trtxp 5782 | 
. . . . . . . . . . . 12
 | |
| 38 | breq1 4643 | 
. . . . . . . . . . . 12
 | |
| 39 | 37, 38 | syl5rbbr 251 | 
. . . . . . . . . . 11
 | 
| 40 | 36, 39 | syl 15 | 
. . . . . . . . . 10
 | 
| 41 | 40 | pm5.32i 618 | 
. . . . . . . . 9
 | 
| 42 | 41 | exbii 1582 | 
. . . . . . . 8
 | 
| 43 | eldm 4899 | 
. . . . . . . . 9
 | |
| 44 | 43 | anbi1i 676 | 
. . . . . . . 8
 | 
| 45 | 34, 42, 44 | 3bitr4i 268 | 
. . . . . . 7
 | 
| 46 | 33, 45 | bitri 240 | 
. . . . . 6
 | 
| 47 | oteltxp 5783 | 
. . . . . 6
 | |
| 48 | 32, 46, 47 | 3bitr4i 268 | 
. . . . 5
 | 
| 49 | opeq2 4580 | 
. . . . . . 7
 | |
| 50 | 49 | eleq1d 2419 | 
. . . . . 6
 | 
| 51 | 49 | eleq1d 2419 | 
. . . . . 6
 | 
| 52 | 50, 51 | bibi12d 312 | 
. . . . 5
 | 
| 53 | 48, 52 | mpbiri 224 | 
. . . 4
 | 
| 54 | 53 | exlimivv 1635 | 
. . 3
 | 
| 55 | 3, 54 | ax-mp 5 | 
. 2
 | 
| 56 | 55 | eqrelriv 4851 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-co 4727 df-ima 4728 df-id 4768 df-cnv 4786 df-rn 4787 df-dm 4788 df-fun 4790 df-fn 4791 df-fv 4796 df-2nd 4798 df-txp 5737 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |