New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > txpcofun | Unicode version |
Description: Composition distributes over tail cross product in the case of a function. (Contributed by SF, 18-Feb-2015.) |
Ref | Expression |
---|---|
txpcofun.1 |
Ref | Expression |
---|---|
txpcofun |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2863 | . . . 4 | |
2 | opeqex 4622 | . . . 4 | |
3 | 1, 2 | ax-mp 5 | . . 3 |
4 | dmcoss 4972 | . . . . . . . . . 10 | |
5 | opeldm 4911 | . . . . . . . . . 10 | |
6 | 4, 5 | sseldi 3272 | . . . . . . . . 9 |
7 | 6 | pm4.71ri 614 | . . . . . . . 8 |
8 | 7 | anbi1i 676 | . . . . . . 7 |
9 | anass 630 | . . . . . . 7 | |
10 | fvex 5340 | . . . . . . . . . . 11 | |
11 | breq1 4643 | . . . . . . . . . . 11 | |
12 | 10, 11 | ceqsexv 2895 | . . . . . . . . . 10 |
13 | breq1 4643 | . . . . . . . . . . 11 | |
14 | 10, 13 | ceqsexv 2895 | . . . . . . . . . 10 |
15 | 12, 14 | anbi12i 678 | . . . . . . . . 9 |
16 | eqcom 2355 | . . . . . . . . . . . . . 14 | |
17 | txpcofun.1 | . . . . . . . . . . . . . . 15 | |
18 | funbrfvb 5361 | . . . . . . . . . . . . . . 15 | |
19 | 17, 18 | mpan 651 | . . . . . . . . . . . . . 14 |
20 | 16, 19 | syl5bb 248 | . . . . . . . . . . . . 13 |
21 | 20 | anbi1d 685 | . . . . . . . . . . . 12 |
22 | 21 | exbidv 1626 | . . . . . . . . . . 11 |
23 | opelco 4885 | . . . . . . . . . . 11 | |
24 | 22, 23 | syl6bbr 254 | . . . . . . . . . 10 |
25 | 20 | anbi1d 685 | . . . . . . . . . . . 12 |
26 | 25 | exbidv 1626 | . . . . . . . . . . 11 |
27 | opelco 4885 | . . . . . . . . . . 11 | |
28 | 26, 27 | syl6bbr 254 | . . . . . . . . . 10 |
29 | 24, 28 | anbi12d 691 | . . . . . . . . 9 |
30 | 15, 29 | syl5rbbr 251 | . . . . . . . 8 |
31 | 30 | pm5.32i 618 | . . . . . . 7 |
32 | 8, 9, 31 | 3bitrri 263 | . . . . . 6 |
33 | opelco 4885 | . . . . . . 7 | |
34 | 19.41v 1901 | . . . . . . . 8 | |
35 | funbrfv 5357 | . . . . . . . . . . . 12 | |
36 | 17, 35 | ax-mp 5 | . . . . . . . . . . 11 |
37 | trtxp 5782 | . . . . . . . . . . . 12 | |
38 | breq1 4643 | . . . . . . . . . . . 12 | |
39 | 37, 38 | syl5rbbr 251 | . . . . . . . . . . 11 |
40 | 36, 39 | syl 15 | . . . . . . . . . 10 |
41 | 40 | pm5.32i 618 | . . . . . . . . 9 |
42 | 41 | exbii 1582 | . . . . . . . 8 |
43 | eldm 4899 | . . . . . . . . 9 | |
44 | 43 | anbi1i 676 | . . . . . . . 8 |
45 | 34, 42, 44 | 3bitr4i 268 | . . . . . . 7 |
46 | 33, 45 | bitri 240 | . . . . . 6 |
47 | oteltxp 5783 | . . . . . 6 | |
48 | 32, 46, 47 | 3bitr4i 268 | . . . . 5 |
49 | opeq2 4580 | . . . . . . 7 | |
50 | 49 | eleq1d 2419 | . . . . . 6 |
51 | 49 | eleq1d 2419 | . . . . . 6 |
52 | 50, 51 | bibi12d 312 | . . . . 5 |
53 | 48, 52 | mpbiri 224 | . . . 4 |
54 | 53 | exlimivv 1635 | . . 3 |
55 | 3, 54 | ax-mp 5 | . 2 |
56 | 55 | eqrelriv 4851 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 wex 1541 wceq 1642 wcel 1710 cvv 2860 cop 4562 class class class wbr 4640 ccom 4722 cdm 4773 wfun 4776 cfv 4782 ctxp 5736 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-co 4727 df-ima 4728 df-id 4768 df-cnv 4786 df-rn 4787 df-dm 4788 df-fun 4790 df-fn 4791 df-fv 4796 df-2nd 4798 df-txp 5737 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |