Theorem List for New Foundations Explorer - 201-300   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Theorem | mpbid 201 | 
A deduction from a biconditional, related to modus ponens.  (Contributed
       by NM, 5-Aug-1993.)
 | 
                                                | 
|   | 
| Theorem | mpbii 202 | 
An inference from a nested biconditional, related to modus ponens.
       (Contributed by NM, 5-Aug-1993.)  (Proof shortened by Wolf Lammen,
       25-Oct-2012.)
 | 
                                          | 
|   | 
| Theorem | sylibr 203 | 
A mixed syllogism inference from an implication and a biconditional.
       Useful for substituting a consequent with a definition.  (Contributed by
       NM, 5-Aug-1993.)
 | 
                                          | 
|   | 
| Theorem | sylbir 204 | 
A mixed syllogism inference from a biconditional and an implication.
       (Contributed by NM, 5-Aug-1993.)
 | 
                                          | 
|   | 
| Theorem | sylibd 205 | 
A syllogism deduction.  (Contributed by NM, 3-Aug-1994.)
 | 
                                                            | 
|   | 
| Theorem | sylbid 206 | 
A syllogism deduction.  (Contributed by NM, 3-Aug-1994.)
 | 
                                                            | 
|   | 
| Theorem | mpbidi 207 | 
A deduction from a biconditional, related to modus ponens.  (Contributed
       by NM, 9-Aug-1994.)
 | 
                                                            | 
|   | 
| Theorem | syl5bi 208 | 
A mixed syllogism inference from a nested implication and a
       biconditional.  Useful for substituting an embedded antecedent with a
       definition.  (Contributed by NM, 5-Aug-1993.)
 | 
                                                      | 
|   | 
| Theorem | syl5bir 209 | 
A mixed syllogism inference from a nested implication and a
       biconditional.  (Contributed by NM, 5-Aug-1993.)
 | 
                                                      | 
|   | 
| Theorem | syl5ib 210 | 
A mixed syllogism inference.  (Contributed by NM, 5-Aug-1993.)
 | 
                                                      | 
|   | 
| Theorem | syl5ibcom 211 | 
A mixed syllogism inference.  (Contributed by NM, 19-Jun-2007.)
 | 
                                                      | 
|   | 
| Theorem | syl5ibr 212 | 
A mixed syllogism inference.  (Contributed by NM, 3-Apr-1994.)
 | 
                                                      | 
|   | 
| Theorem | syl5ibrcom 213 | 
A mixed syllogism inference.  (Contributed by NM, 20-Jun-2007.)
 | 
                                                      | 
|   | 
| Theorem | biimprd 214 | 
Deduce a converse implication from a logical equivalence.  (Contributed
       by NM, 5-Aug-1993.)  (Proof shortened by Wolf Lammen, 22-Sep-2013.)
 | 
                                      | 
|   | 
| Theorem | biimpcd 215 | 
Deduce a commuted implication from a logical equivalence.  (Contributed
       by NM, 3-May-1994.)  (Proof shortened by Wolf Lammen, 22-Sep-2013.)
 | 
                                      | 
|   | 
| Theorem | biimprcd 216 | 
Deduce a converse commuted implication from a logical equivalence.
       (Contributed by NM, 3-May-1994.)  (Proof shortened by Wolf Lammen,
       20-Dec-2013.)
 | 
                                      | 
|   | 
| Theorem | syl6ib 217 | 
A mixed syllogism inference from a nested implication and a
       biconditional.  (Contributed by NM, 5-Aug-1993.)
 | 
                                                      | 
|   | 
| Theorem | syl6ibr 218 | 
A mixed syllogism inference from a nested implication and a
       biconditional.  Useful for substituting an embedded consequent with a
       definition.  (Contributed by NM, 5-Aug-1993.)
 | 
                                                      | 
|   | 
| Theorem | syl6bi 219 | 
A mixed syllogism inference.  (Contributed by NM, 2-Jan-1994.)
 | 
                                                      | 
|   | 
| Theorem | syl6bir 220 | 
A mixed syllogism inference.  (Contributed by NM, 18-May-1994.)
 | 
                                                      | 
|   | 
| Theorem | syl7bi 221 | 
A mixed syllogism inference from a doubly nested implication and a
       biconditional.  (Contributed by NM, 5-Aug-1993.)
 | 
                                                                  | 
|   | 
| Theorem | syl8ib 222 | 
A syllogism rule of inference.  The second premise is used to replace
       the consequent of the first premise.  (Contributed by NM,
       1-Aug-1994.)
 | 
                                                                  | 
|   | 
| Theorem | mpbird 223 | 
A deduction from a biconditional, related to modus ponens.  (Contributed
       by NM, 5-Aug-1993.)
 | 
                                                | 
|   | 
| Theorem | mpbiri 224 | 
An inference from a nested biconditional, related to modus ponens.
       (Contributed by NM, 5-Aug-1993.)  (Proof shortened by Wolf Lammen,
       25-Oct-2012.)
 | 
                                          | 
|   | 
| Theorem | sylibrd 225 | 
A syllogism deduction.  (Contributed by NM, 3-Aug-1994.)
 | 
                                                            | 
|   | 
| Theorem | sylbird 226 | 
A syllogism deduction.  (Contributed by NM, 3-Aug-1994.)
 | 
                                                            | 
|   | 
| Theorem | biid 227 | 
Principle of identity for logical equivalence.  Theorem *4.2 of
     [WhiteheadRussell] p. 117. 
(Contributed by NM, 5-Aug-1993.)
 | 
          | 
|   | 
| Theorem | biidd 228 | 
Principle of identity with antecedent.  (Contributed by NM,
     25-Nov-1995.)
 | 
                | 
|   | 
| Theorem | pm5.1im 229 | 
Two propositions are equivalent if they are both true.  Closed form of
     2th 230.  Equivalent to a bi1 178-like version of the xor-connective.  This
     theorem stays true, no matter how you permute its operands.  This is
     evident from its sharper version                    .
     (Contributed by Wolf Lammen, 12-May-2013.)
 | 
                      | 
|   | 
| Theorem | 2th 230 | 
Two truths are equivalent.  (Contributed by NM, 18-Aug-1993.)
 | 
                              | 
|   | 
| Theorem | 2thd 231 | 
Two truths are equivalent (deduction rule).  (Contributed by NM,
       3-Jun-2012.)
 | 
                                                | 
|   | 
| Theorem | ibi 232 | 
Inference that converts a biconditional implied by one of its arguments,
       into an implication.  (Contributed by NM, 17-Oct-2003.)
 | 
                                | 
|   | 
| Theorem | ibir 233 | 
Inference that converts a biconditional implied by one of its arguments,
       into an implication.  (Contributed by NM, 22-Jul-2004.)
 | 
                                | 
|   | 
| Theorem | ibd 234 | 
Deduction that converts a biconditional implied by one of its arguments,
       into an implication.  (Contributed by NM, 26-Jun-2004.)
 | 
                                            | 
|   | 
| Theorem | pm5.74 235 | 
Distribution of implication over biconditional.  Theorem *5.74 of
     [WhiteheadRussell] p. 126. 
(Contributed by NM, 1-Aug-1994.)  (Proof
     shortened by Wolf Lammen, 11-Apr-2013.)
 | 
                                        | 
|   | 
| Theorem | pm5.74i 236 | 
Distribution of implication over biconditional (inference rule).
       (Contributed by NM, 1-Aug-1994.)
 | 
                                            | 
|   | 
| Theorem | pm5.74ri 237 | 
Distribution of implication over biconditional (reverse inference rule).
       (Contributed by NM, 1-Aug-1994.)
 | 
                                            | 
|   | 
| Theorem | pm5.74d 238 | 
Distribution of implication over biconditional (deduction rule).
       (Contributed by NM, 21-Mar-1996.)
 | 
                                                        | 
|   | 
| Theorem | pm5.74rd 239 | 
Distribution of implication over biconditional (deduction rule).
       (Contributed by NM, 19-Mar-1997.)
 | 
                                                        | 
|   | 
| Theorem | bitri 240 | 
An inference from transitive law for logical equivalence.  (Contributed
       by NM, 5-Aug-1993.)  (Proof shortened by Wolf Lammen, 13-Oct-2012.)
 | 
                                          | 
|   | 
| Theorem | bitr2i 241 | 
An inference from transitive law for logical equivalence.  (Contributed
       by NM, 5-Aug-1993.)
 | 
                                          | 
|   | 
| Theorem | bitr3i 242 | 
An inference from transitive law for logical equivalence.  (Contributed
       by NM, 5-Aug-1993.)
 | 
                                          | 
|   | 
| Theorem | bitr4i 243 | 
An inference from transitive law for logical equivalence.  (Contributed
       by NM, 5-Aug-1993.)
 | 
                                          | 
|   | 
| Theorem | bitrd 244 | 
Deduction form of bitri 240.  (Contributed by NM, 5-Aug-1993.)  (Proof
       shortened by Wolf Lammen, 14-Apr-2013.)
 | 
                                                            | 
|   | 
| Theorem | bitr2d 245 | 
Deduction form of bitr2i 241.  (Contributed by NM, 9-Jun-2004.)
 | 
                                                            | 
|   | 
| Theorem | bitr3d 246 | 
Deduction form of bitr3i 242.  (Contributed by NM, 5-Aug-1993.)
 | 
                                                            | 
|   | 
| Theorem | bitr4d 247 | 
Deduction form of bitr4i 243.  (Contributed by NM, 5-Aug-1993.)
 | 
                                                            | 
|   | 
| Theorem | syl5bb 248 | 
A syllogism inference from two biconditionals.  (Contributed by NM,
       5-Aug-1993.)
 | 
                                                      | 
|   | 
| Theorem | syl5rbb 249 | 
A syllogism inference from two biconditionals.  (Contributed by NM,
       5-Aug-1993.)
 | 
                                                      | 
|   | 
| Theorem | syl5bbr 250 | 
A syllogism inference from two biconditionals.  (Contributed by NM,
       5-Aug-1993.)
 | 
                                                      | 
|   | 
| Theorem | syl5rbbr 251 | 
A syllogism inference from two biconditionals.  (Contributed by NM,
       25-Nov-1994.)
 | 
                                                      | 
|   | 
| Theorem | syl6bb 252 | 
A syllogism inference from two biconditionals.  (Contributed by NM,
       5-Aug-1993.)
 | 
                                                      | 
|   | 
| Theorem | syl6rbb 253 | 
A syllogism inference from two biconditionals.  (Contributed by NM,
       5-Aug-1993.)
 | 
                                                      | 
|   | 
| Theorem | syl6bbr 254 | 
A syllogism inference from two biconditionals.  (Contributed by NM,
       5-Aug-1993.)
 | 
                                                      | 
|   | 
| Theorem | syl6rbbr 255 | 
A syllogism inference from two biconditionals.  (Contributed by NM,
       25-Nov-1994.)
 | 
                                                      | 
|   | 
| Theorem | 3imtr3i 256 | 
A mixed syllogism inference, useful for removing a definition from both
       sides of an implication.  (Contributed by NM, 10-Aug-1994.)
 | 
                                                          | 
|   | 
| Theorem | 3imtr4i 257 | 
A mixed syllogism inference, useful for applying a definition to both
       sides of an implication.  (Contributed by NM, 5-Aug-1993.)
 | 
                                                          | 
|   | 
| Theorem | 3imtr3d 258 | 
More general version of 3imtr3i 256.  Useful for converting conditional
       definitions in a formula.  (Contributed by NM, 8-Apr-1996.)
 | 
                                                                                  | 
|   | 
| Theorem | 3imtr4d 259 | 
More general version of 3imtr4i 257.  Useful for converting conditional
       definitions in a formula.  (Contributed by NM, 26-Oct-1995.)
 | 
                                                                                  | 
|   | 
| Theorem | 3imtr3g 260 | 
More general version of 3imtr3i 256.  Useful for converting definitions
       in a formula.  (Contributed by NM, 20-May-1996.)  (Proof shortened by
       Wolf Lammen, 20-Dec-2013.)
 | 
                                                                      | 
|   | 
| Theorem | 3imtr4g 261 | 
More general version of 3imtr4i 257.  Useful for converting definitions
       in a formula.  (Contributed by NM, 20-May-1996.)  (Proof shortened by
       Wolf Lammen, 20-Dec-2013.)
 | 
                                                                      | 
|   | 
| Theorem | 3bitri 262 | 
A chained inference from transitive law for logical equivalence.
       (Contributed by NM, 5-Aug-1993.)
 | 
                                                          | 
|   | 
| Theorem | 3bitrri 263 | 
A chained inference from transitive law for logical equivalence.
       (Contributed by NM, 4-Aug-2006.)
 | 
                                                          | 
|   | 
| Theorem | 3bitr2i 264 | 
A chained inference from transitive law for logical equivalence.
       (Contributed by NM, 4-Aug-2006.)
 | 
                                                          | 
|   | 
| Theorem | 3bitr2ri 265 | 
A chained inference from transitive law for logical equivalence.
       (Contributed by NM, 4-Aug-2006.)
 | 
                                                          | 
|   | 
| Theorem | 3bitr3i 266 | 
A chained inference from transitive law for logical equivalence.
       (Contributed by NM, 19-Aug-1993.)
 | 
                                                          | 
|   | 
| Theorem | 3bitr3ri 267 | 
A chained inference from transitive law for logical equivalence.
       (Contributed by NM, 5-Aug-1993.)
 | 
                                                          | 
|   | 
| Theorem | 3bitr4i 268 | 
A chained inference from transitive law for logical equivalence.  This
       inference is frequently used to apply a definition to both sides of a
       logical equivalence.  (Contributed by NM, 5-Aug-1993.)
 | 
                                                          | 
|   | 
| Theorem | 3bitr4ri 269 | 
A chained inference from transitive law for logical equivalence.
       (Contributed by NM, 2-Sep-1995.)
 | 
                                                          | 
|   | 
| Theorem | 3bitrd 270 | 
Deduction from transitivity of biconditional.  (Contributed by NM,
       13-Aug-1999.)
 | 
                                                                                  | 
|   | 
| Theorem | 3bitrrd 271 | 
Deduction from transitivity of biconditional.  (Contributed by NM,
       4-Aug-2006.)
 | 
                                                                                  | 
|   | 
| Theorem | 3bitr2d 272 | 
Deduction from transitivity of biconditional.  (Contributed by NM,
       4-Aug-2006.)
 | 
                                                                                  | 
|   | 
| Theorem | 3bitr2rd 273 | 
Deduction from transitivity of biconditional.  (Contributed by NM,
       4-Aug-2006.)
 | 
                                                                                  | 
|   | 
| Theorem | 3bitr3d 274 | 
Deduction from transitivity of biconditional.  Useful for converting
       conditional definitions in a formula.  (Contributed by NM,
       24-Apr-1996.)
 | 
                                                                                  | 
|   | 
| Theorem | 3bitr3rd 275 | 
Deduction from transitivity of biconditional.  (Contributed by NM,
       4-Aug-2006.)
 | 
                                                                                  | 
|   | 
| Theorem | 3bitr4d 276 | 
Deduction from transitivity of biconditional.  Useful for converting
       conditional definitions in a formula.  (Contributed by NM,
       18-Oct-1995.)
 | 
                                                                                  | 
|   | 
| Theorem | 3bitr4rd 277 | 
Deduction from transitivity of biconditional.  (Contributed by NM,
       4-Aug-2006.)
 | 
                                                                                  | 
|   | 
| Theorem | 3bitr3g 278 | 
More general version of 3bitr3i 266.  Useful for converting definitions
       in a formula.  (Contributed by NM, 4-Jun-1995.)
 | 
                                                                      | 
|   | 
| Theorem | 3bitr4g 279 | 
More general version of 3bitr4i 268.  Useful for converting definitions
       in a formula.  (Contributed by NM, 5-Aug-1993.)
 | 
                                                                      | 
|   | 
| Theorem | bi3ant 280 | 
Construct a bi-conditional in antecedent position.  (Contributed by Wolf
       Lammen, 14-May-2013.)
 | 
                                                                  
        | 
|   | 
| Theorem | bisym 281 | 
Express symmetries of theorems in terms of biconditionals.  (Contributed
     by Wolf Lammen, 14-May-2013.)
 | 
                                                                      | 
|   | 
| Theorem | notnot 282 | 
Double negation.  Theorem *4.13 of [WhiteheadRussell] p. 117.
     (Contributed by NM, 5-Aug-1993.)
 | 
              | 
|   | 
| Theorem | con34b 283 | 
Contraposition.  Theorem *4.1 of [WhiteheadRussell] p. 116.  (Contributed
     by NM, 5-Aug-1993.)
 | 
                          | 
|   | 
| Theorem | con4bid 284 | 
A contraposition deduction.  (Contributed by NM, 21-May-1994.)
 | 
                                          | 
|   | 
| Theorem | notbid 285 | 
Deduction negating both sides of a logical equivalence.  (Contributed by
       NM, 21-May-1994.)
 | 
                                          | 
|   | 
| Theorem | notbi 286 | 
Contraposition.  Theorem *4.11 of [WhiteheadRussell] p. 117.  (Contributed
     by NM, 21-May-1994.)  (Proof shortened by Wolf Lammen, 12-Jun-2013.)
 | 
                 
  
       | 
|   | 
| Theorem | notbii 287 | 
Negate both sides of a logical equivalence.  (Contributed by NM,
       5-Aug-1993.)  (Proof shortened by Wolf Lammen, 19-May-2013.)
 | 
                              | 
|   | 
| Theorem | con4bii 288 | 
A contraposition inference.  (Contributed by NM, 21-May-1994.)
 | 
                              | 
|   | 
| Theorem | mtbi 289 | 
An inference from a biconditional, related to modus tollens.
       (Contributed by NM, 15-Nov-1994.)  (Proof shortened by Wolf Lammen,
       25-Oct-2012.)
 | 
                                  | 
|   | 
| Theorem | mtbir 290 | 
An inference from a biconditional, related to modus tollens.
       (Contributed by NM, 15-Nov-1994.)  (Proof shortened by Wolf Lammen,
       14-Oct-2012.)
 | 
                                  | 
|   | 
| Theorem | mtbid 291 | 
A deduction from a biconditional, similar to modus tollens.
       (Contributed by NM, 26-Nov-1995.)
 | 
                                                    | 
|   | 
| Theorem | mtbird 292 | 
A deduction from a biconditional, similar to modus tollens.
       (Contributed by NM, 10-May-1994.)
 | 
                                                    | 
|   | 
| Theorem | mtbii 293 | 
An inference from a biconditional, similar to modus tollens.
       (Contributed by NM, 27-Nov-1995.)
 | 
                                              | 
|   | 
| Theorem | mtbiri 294 | 
An inference from a biconditional, similar to modus tollens.
       (Contributed by NM, 24-Aug-1995.)
 | 
                                              | 
|   | 
| Theorem | sylnib 295 | 
A mixed syllogism inference from an implication and a biconditional.
       (Contributed by Wolf Lammen, 16-Dec-2013.)
 | 
                                              | 
|   | 
| Theorem | sylnibr 296 | 
A mixed syllogism inference from an implication and a biconditional.
       Useful for substituting a consequent with a definition.  (Contributed by
       Wolf Lammen, 16-Dec-2013.)
 | 
                                              | 
|   | 
| Theorem | sylnbi 297 | 
A mixed syllogism inference from a biconditional and an implication.
       Useful for substituting an antecedent with a definition.  (Contributed
       by Wolf Lammen, 16-Dec-2013.)
 | 
                                              | 
|   | 
| Theorem | sylnbir 298 | 
A mixed syllogism inference from a biconditional and an implication.
       (Contributed by Wolf Lammen, 16-Dec-2013.)
 | 
                                              | 
|   | 
| Theorem | xchnxbi 299 | 
Replacement of a subexpression by an equivalent one.  (Contributed by
       Wolf Lammen, 27-Sep-2014.)
 | 
                                              | 
|   | 
| Theorem | xchnxbir 300 | 
Replacement of a subexpression by an equivalent one.  (Contributed by
       Wolf Lammen, 27-Sep-2014.)
 | 
                                              |