| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > syl6eleqr | Unicode version | ||
| Description: A membership and equality inference. (Contributed by NM, 24-Apr-2005.) | 
| Ref | Expression | 
|---|---|
| syl6eleqr.1 | 
 | 
| syl6eleqr.2 | 
 | 
| Ref | Expression | 
|---|---|
| syl6eleqr | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | syl6eleqr.1 | 
. 2
 | |
| 2 | syl6eleqr.2 | 
. . 3
 | |
| 3 | 2 | eqcomi 2357 | 
. 2
 | 
| 4 | 1, 3 | syl6eleq 2443 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 | 
| This theorem is referenced by: reiotacl2 4364 nnadjoinpw 4522 sfinltfin 4536 vinf 4556 nulnnn 4557 ecopqsi 5982 ncidg 6123 | 
| Copyright terms: Public domain | W3C validator |