New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nnadjoinpw | Unicode version |
Description: Adjoining an element to a power class. Theorem X.1.40 of [Rosser] p. 530. (Contributed by SF, 27-Jan-2015.) |
Ref | Expression |
---|---|
nnadjoinpw | Nn Nn ∼ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwadjoin 4120 | . 2 | |
2 | simp3 957 | . . 3 Nn Nn ∼ | |
3 | simp1r 980 | . . . 4 Nn Nn ∼ Nn | |
4 | simp2r 982 | . . . . 5 Nn Nn ∼ ∼ | |
5 | unipw 4118 | . . . . . 6 | |
6 | 5 | compleqi 3245 | . . . . 5 ∼ ∼ |
7 | 4, 6 | syl6eleqr 2444 | . . . 4 Nn Nn ∼ ∼ |
8 | nnadjoin 4521 | . . . 4 Nn ∼ | |
9 | 3, 2, 7, 8 | syl3anc 1182 | . . 3 Nn Nn ∼ |
10 | elcomplg 3219 | . . . . . . . . 9 ∼ ∼ | |
11 | 10 | ibi 232 | . . . . . . . 8 ∼ |
12 | 4, 11 | syl 15 | . . . . . . 7 Nn Nn ∼ |
13 | snssg 3845 | . . . . . . . 8 ∼ | |
14 | 4, 13 | syl 15 | . . . . . . 7 Nn Nn ∼ |
15 | 12, 14 | mtbid 291 | . . . . . 6 Nn Nn ∼ |
16 | 15 | intnand 882 | . . . . 5 Nn Nn ∼ |
17 | 16 | ralrimivw 2699 | . . . 4 Nn Nn ∼ |
18 | disjr 3593 | . . . . 5 | |
19 | eqeq1 2359 | . . . . . . 7 | |
20 | 19 | rexbidv 2636 | . . . . . 6 |
21 | 20 | ralab 2998 | . . . . 5 |
22 | ralcom4 2878 | . . . . . 6 | |
23 | vex 2863 | . . . . . . . . . 10 | |
24 | snex 4112 | . . . . . . . . . 10 | |
25 | 23, 24 | unex 4107 | . . . . . . . . 9 |
26 | eleq1 2413 | . . . . . . . . . 10 | |
27 | 26 | notbid 285 | . . . . . . . . 9 |
28 | 25, 27 | ceqsalv 2886 | . . . . . . . 8 |
29 | 25 | elpw 3729 | . . . . . . . . 9 |
30 | unss 3438 | . . . . . . . . 9 | |
31 | 29, 30 | bitr4i 243 | . . . . . . . 8 |
32 | 28, 31 | xchbinx 301 | . . . . . . 7 |
33 | 32 | ralbii 2639 | . . . . . 6 |
34 | r19.23v 2731 | . . . . . . 7 | |
35 | 34 | albii 1566 | . . . . . 6 |
36 | 22, 33, 35 | 3bitr3ri 267 | . . . . 5 |
37 | 18, 21, 36 | 3bitri 262 | . . . 4 |
38 | 17, 37 | sylibr 203 | . . 3 Nn Nn ∼ |
39 | eladdci 4400 | . . 3 | |
40 | 2, 9, 38, 39 | syl3anc 1182 | . 2 Nn Nn ∼ |
41 | 1, 40 | syl5eqel 2437 | 1 Nn Nn ∼ |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wb 176 wa 358 w3a 934 wal 1540 wceq 1642 wcel 1710 cab 2339 wral 2615 wrex 2616 ∼ ccompl 3206 cun 3208 cin 3209 wss 3258 c0 3551 cpw 3723 csn 3738 cuni 3892 Nn cnnc 4374 cplc 4376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-0c 4378 df-addc 4379 df-nnc 4380 |
This theorem is referenced by: nnpweq 4524 sfindbl 4531 |
Copyright terms: Public domain | W3C validator |