| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > nnadjoinpw | Unicode version | ||
| Description: Adjoining an element to a power class. Theorem X.1.40 of [Rosser] p. 530. (Contributed by SF, 27-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| nnadjoinpw | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pwadjoin 4120 | 
. 2
 | |
| 2 | simp3 957 | 
. . 3
 | |
| 3 | simp1r 980 | 
. . . 4
 | |
| 4 | simp2r 982 | 
. . . . 5
 | |
| 5 | unipw 4118 | 
. . . . . 6
 | |
| 6 | 5 | compleqi 3245 | 
. . . . 5
 | 
| 7 | 4, 6 | syl6eleqr 2444 | 
. . . 4
 | 
| 8 | nnadjoin 4521 | 
. . . 4
 | |
| 9 | 3, 2, 7, 8 | syl3anc 1182 | 
. . 3
 | 
| 10 | elcomplg 3219 | 
. . . . . . . . 9
 | |
| 11 | 10 | ibi 232 | 
. . . . . . . 8
 | 
| 12 | 4, 11 | syl 15 | 
. . . . . . 7
 | 
| 13 | snssg 3845 | 
. . . . . . . 8
 | |
| 14 | 4, 13 | syl 15 | 
. . . . . . 7
 | 
| 15 | 12, 14 | mtbid 291 | 
. . . . . 6
 | 
| 16 | 15 | intnand 882 | 
. . . . 5
 | 
| 17 | 16 | ralrimivw 2699 | 
. . . 4
 | 
| 18 | disjr 3593 | 
. . . . 5
 | |
| 19 | eqeq1 2359 | 
. . . . . . 7
 | |
| 20 | 19 | rexbidv 2636 | 
. . . . . 6
 | 
| 21 | 20 | ralab 2998 | 
. . . . 5
 | 
| 22 | ralcom4 2878 | 
. . . . . 6
 | |
| 23 | vex 2863 | 
. . . . . . . . . 10
 | |
| 24 | snex 4112 | 
. . . . . . . . . 10
 | |
| 25 | 23, 24 | unex 4107 | 
. . . . . . . . 9
 | 
| 26 | eleq1 2413 | 
. . . . . . . . . 10
 | |
| 27 | 26 | notbid 285 | 
. . . . . . . . 9
 | 
| 28 | 25, 27 | ceqsalv 2886 | 
. . . . . . . 8
 | 
| 29 | 25 | elpw 3729 | 
. . . . . . . . 9
 | 
| 30 | unss 3438 | 
. . . . . . . . 9
 | |
| 31 | 29, 30 | bitr4i 243 | 
. . . . . . . 8
 | 
| 32 | 28, 31 | xchbinx 301 | 
. . . . . . 7
 | 
| 33 | 32 | ralbii 2639 | 
. . . . . 6
 | 
| 34 | r19.23v 2731 | 
. . . . . . 7
 | |
| 35 | 34 | albii 1566 | 
. . . . . 6
 | 
| 36 | 22, 33, 35 | 3bitr3ri 267 | 
. . . . 5
 | 
| 37 | 18, 21, 36 | 3bitri 262 | 
. . . 4
 | 
| 38 | 17, 37 | sylibr 203 | 
. . 3
 | 
| 39 | eladdci 4400 | 
. . 3
 | |
| 40 | 2, 9, 38, 39 | syl3anc 1182 | 
. 2
 | 
| 41 | 1, 40 | syl5eqel 2437 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-0c 4378 df-addc 4379 df-nnc 4380 | 
| This theorem is referenced by: nnpweq 4524 sfindbl 4531 | 
| Copyright terms: Public domain | W3C validator |