New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl6eleqr | GIF version |
Description: A membership and equality inference. (Contributed by NM, 24-Apr-2005.) |
Ref | Expression |
---|---|
syl6eleqr.1 | ⊢ (φ → A ∈ B) |
syl6eleqr.2 | ⊢ C = B |
Ref | Expression |
---|---|
syl6eleqr | ⊢ (φ → A ∈ C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6eleqr.1 | . 2 ⊢ (φ → A ∈ B) | |
2 | syl6eleqr.2 | . . 3 ⊢ C = B | |
3 | 2 | eqcomi 2357 | . 2 ⊢ B = C |
4 | 1, 3 | syl6eleq 2443 | 1 ⊢ (φ → A ∈ C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 |
This theorem is referenced by: reiotacl2 4364 nnadjoinpw 4522 sfinltfin 4536 vinf 4556 nulnnn 4557 ecopqsi 5982 ncidg 6123 |
Copyright terms: Public domain | W3C validator |