NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  syl6eleqr GIF version

Theorem syl6eleqr 2444
Description: A membership and equality inference. (Contributed by NM, 24-Apr-2005.)
Hypotheses
Ref Expression
syl6eleqr.1 (φA B)
syl6eleqr.2 C = B
Assertion
Ref Expression
syl6eleqr (φA C)

Proof of Theorem syl6eleqr
StepHypRef Expression
1 syl6eleqr.1 . 2 (φA B)
2 syl6eleqr.2 . . 3 C = B
32eqcomi 2357 . 2 B = C
41, 3syl6eleq 2443 1 (φA C)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642   wcel 1710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-cleq 2346  df-clel 2349
This theorem is referenced by:  reiotacl2  4364  nnadjoinpw  4522  sfinltfin  4536  vinf  4556  nulnnn  4557  ecopqsi  5982  ncidg  6123
  Copyright terms: Public domain W3C validator