| Step | Hyp | Ref
| Expression |
| 1 | | complab 3525 |
. . . . . . 7
∼ 
 
  |
| 2 | | df-sn 3742 |
. . . . . . . 8
  
  |
| 3 | 2 | compleqi 3245 |
. . . . . . 7
∼   ∼    |
| 4 | | df-ne 2519 |
. . . . . . . 8

  |
| 5 | 4 | abbii 2466 |
. . . . . . 7

 
  |
| 6 | 1, 3, 5 | 3eqtr4ri 2384 |
. . . . . 6

 ∼    |
| 7 | | snex 4112 |
. . . . . . 7
   |
| 8 | 7 | complex 4105 |
. . . . . 6
∼    |
| 9 | 6, 8 | eqeltri 2423 |
. . . . 5

  |
| 10 | | neeq1 2525 |
. . . . 5
 0c 
0c    |
| 11 | | neeq1 2525 |
. . . . 5
 
   |
| 12 | | neeq1 2525 |
. . . . 5
  1c   1c    |
| 13 | | neeq1 2525 |
. . . . 5
 
   |
| 14 | | nulel0c 4423 |
. . . . . 6
0c |
| 15 | | ne0i 3557 |
. . . . . 6
 0c 0c   |
| 16 | 14, 15 | ax-mp 5 |
. . . . 5
0c  |
| 17 | | n0 3560 |
. . . . . 6


  |
| 18 | | vinf 4556 |
. . . . . . . . . . . . . . 15
Fin |
| 19 | | elunii 3897 |
. . . . . . . . . . . . . . . . . 18
 
Nn Nn  |
| 20 | 19 | ancoms 439 |
. . . . . . . . . . . . . . . . 17
  Nn  Nn  |
| 21 | | df-fin 4381 |
. . . . . . . . . . . . . . . . 17
Fin Nn |
| 22 | 20, 21 | syl6eleqr 2444 |
. . . . . . . . . . . . . . . 16
  Nn  Fin  |
| 23 | 22 | ex 423 |
. . . . . . . . . . . . . . 15
 Nn  Fin   |
| 24 | 18, 23 | mtoi 169 |
. . . . . . . . . . . . . 14
 Nn   |
| 25 | | eleq1 2413 |
. . . . . . . . . . . . . . 15
 
   |
| 26 | 25 | notbid 285 |
. . . . . . . . . . . . . 14
 
   |
| 27 | 24, 26 | syl5ibrcom 213 |
. . . . . . . . . . . . 13
 Nn     |
| 28 | 27 | necon2ad 2565 |
. . . . . . . . . . . 12
 Nn     |
| 29 | 28 | imp 418 |
. . . . . . . . . . 11
  Nn    |
| 30 | | compleqb 3544 |
. . . . . . . . . . . 12
 ∼
∼   |
| 31 | 30 | necon3bii 2549 |
. . . . . . . . . . 11
 ∼
∼   |
| 32 | 29, 31 | sylib 188 |
. . . . . . . . . 10
  Nn  ∼ ∼   |
| 33 | | complV 4071 |
. . . . . . . . . . 11
∼  |
| 34 | 33 | neeq2i 2528 |
. . . . . . . . . 10
∼ ∼ ∼   |
| 35 | 32, 34 | sylib 188 |
. . . . . . . . 9
  Nn  ∼   |
| 36 | | n0 3560 |
. . . . . . . . . 10
∼  ∼   |
| 37 | | vex 2863 |
. . . . . . . . . . . . . . 15
 |
| 38 | 37 | elcompl 3226 |
. . . . . . . . . . . . . 14
 ∼   |
| 39 | 37 | elsuci 4415 |
. . . . . . . . . . . . . . 15
 
     
1c  |
| 40 | | ne0i 3557 |
. . . . . . . . . . . . . . 15
    
 1c  1c   |
| 41 | 39, 40 | syl 15 |
. . . . . . . . . . . . . 14
 
  1c   |
| 42 | 38, 41 | sylan2b 461 |
. . . . . . . . . . . . 13
 
∼  
1c
  |
| 43 | 42 | ex 423 |
. . . . . . . . . . . 12
 
∼  1c    |
| 44 | 43 | adantl 452 |
. . . . . . . . . . 11
  Nn   ∼  1c    |
| 45 | 44 | exlimdv 1636 |
. . . . . . . . . 10
  Nn   
∼  1c    |
| 46 | 36, 45 | syl5bi 208 |
. . . . . . . . 9
  Nn  ∼  1c    |
| 47 | 35, 46 | mpd 14 |
. . . . . . . 8
  Nn   1c   |
| 48 | 47 | ex 423 |
. . . . . . 7
 Nn  
1c
   |
| 49 | 48 | exlimdv 1636 |
. . . . . 6
 Nn    1c    |
| 50 | 17, 49 | syl5bi 208 |
. . . . 5
 Nn   1c    |
| 51 | 9, 10, 11, 12, 13, 16, 50 | finds 4412 |
. . . 4
 Nn   |
| 52 | 51 | neneqd 2533 |
. . 3
 Nn   |
| 53 | 52 | nrex 2717 |
. 2

Nn  |
| 54 | | risset 2662 |
. 2
 Nn  Nn   |
| 55 | 53, 54 | mtbir 290 |
1
Nn |