| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > syldan | Unicode version | ||
| Description: A syllogism deduction with conjoined antecedents. (Contributed by NM, 24-Feb-2005.) (Proof shortened by Wolf Lammen, 6-Apr-2013.) | 
| Ref | Expression | 
|---|---|
| syldan.1 | 
 | 
| syldan.2 | 
 | 
| Ref | Expression | 
|---|---|
| syldan | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | syldan.1 | 
. 2
 | |
| 2 | syldan.2 | 
. . . 4
 | |
| 3 | 2 | expcom 424 | 
. . 3
 | 
| 4 | 3 | adantrd 454 | 
. 2
 | 
| 5 | 1, 4 | mpcom 32 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 177 df-an 360 | 
| This theorem is referenced by: sylan2 460 sbcied2 3084 csbied2 3180 lefinaddc 4451 vfinncvntsp 4550 addlec 6209 nchoicelem5 6294 | 
| Copyright terms: Public domain | W3C validator |