New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > vfinncvntsp | Unicode version |
Description: If the universe is finite, then its size is not a T raising of an element of Spfin. Corollary of theorem X.1.58 of [Rosser] p. 534. (Contributed by SF, 27-Jan-2015.) |
Ref | Expression |
---|---|
vfinncvntsp | Fin Ncfin Spfin Tfin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vfinspnn 4542 | . . . . . . . 8 Fin Spfin Nn | |
2 | difss 3394 | . . . . . . . 8 Nn Nn | |
3 | 1, 2 | syl6ss 3285 | . . . . . . 7 Fin Spfin Nn |
4 | 3 | sselda 3274 | . . . . . 6 Fin Spfin Nn |
5 | vfinncvntnn 4549 | . . . . . 6 Fin Nn Tfin Ncfin | |
6 | 4, 5 | syldan 456 | . . . . 5 Fin Spfin Tfin Ncfin |
7 | 6 | necomd 2600 | . . . 4 Fin Spfin Ncfin Tfin |
8 | df-ne 2519 | . . . 4 Ncfin Tfin Ncfin Tfin | |
9 | 7, 8 | sylib 188 | . . 3 Fin Spfin Ncfin Tfin |
10 | 9 | nrexdv 2718 | . 2 Fin Spfin Ncfin Tfin |
11 | ncfinex 4473 | . . 3 Ncfin | |
12 | eqeq1 2359 | . . . 4 Ncfin Tfin Ncfin Tfin | |
13 | 12 | rexbidv 2636 | . . 3 Ncfin Spfin Tfin Spfin Ncfin Tfin |
14 | 11, 13 | elab 2986 | . 2 Ncfin Spfin Tfin Spfin Ncfin Tfin |
15 | 10, 14 | sylnibr 296 | 1 Fin Ncfin Spfin Tfin |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wa 358 wceq 1642 wcel 1710 cab 2339 wne 2517 wrex 2616 cvv 2860 cdif 3207 c0 3551 csn 3738 Nn cnnc 4374 Fin cfin 4377 Ncfin cncfin 4435 Tfin ctfin 4436 Spfin cspfin 4440 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-sfin 4447 df-spfin 4448 |
This theorem is referenced by: vfinncsp 4555 |
Copyright terms: Public domain | W3C validator |