NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  syldan GIF version

Theorem syldan 456
Description: A syllogism deduction with conjoined antecedents. (Contributed by NM, 24-Feb-2005.) (Proof shortened by Wolf Lammen, 6-Apr-2013.)
Hypotheses
Ref Expression
syldan.1 ((φ ψ) → χ)
syldan.2 ((φ χ) → θ)
Assertion
Ref Expression
syldan ((φ ψ) → θ)

Proof of Theorem syldan
StepHypRef Expression
1 syldan.1 . 2 ((φ ψ) → χ)
2 syldan.2 . . . 4 ((φ χ) → θ)
32expcom 424 . . 3 (χ → (φθ))
43adantrd 454 . 2 (χ → ((φ ψ) → θ))
51, 4mpcom 32 1 ((φ ψ) → θ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  sylan2  460  sbcied2  3084  csbied2  3180  lefinaddc  4451  vfinncvntsp  4550  addlec  6209  nchoicelem5  6294
  Copyright terms: Public domain W3C validator