New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syldan | GIF version |
Description: A syllogism deduction with conjoined antecedents. (Contributed by NM, 24-Feb-2005.) (Proof shortened by Wolf Lammen, 6-Apr-2013.) |
Ref | Expression |
---|---|
syldan.1 | ⊢ ((φ ∧ ψ) → χ) |
syldan.2 | ⊢ ((φ ∧ χ) → θ) |
Ref | Expression |
---|---|
syldan | ⊢ ((φ ∧ ψ) → θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syldan.1 | . 2 ⊢ ((φ ∧ ψ) → χ) | |
2 | syldan.2 | . . . 4 ⊢ ((φ ∧ χ) → θ) | |
3 | 2 | expcom 424 | . . 3 ⊢ (χ → (φ → θ)) |
4 | 3 | adantrd 454 | . 2 ⊢ (χ → ((φ ∧ ψ) → θ)) |
5 | 1, 4 | mpcom 32 | 1 ⊢ ((φ ∧ ψ) → θ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: sylan2 460 sbcied2 3084 csbied2 3180 lefinaddc 4451 vfinncvntsp 4550 addlec 6209 nchoicelem5 6294 |
Copyright terms: Public domain | W3C validator |