NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sylnbir Unicode version

Theorem sylnbir 298
Description: A mixed syllogism inference from a biconditional and an implication. (Contributed by Wolf Lammen, 16-Dec-2013.)
Hypotheses
Ref Expression
sylnbir.1
sylnbir.2
Assertion
Ref Expression
sylnbir

Proof of Theorem sylnbir
StepHypRef Expression
1 sylnbir.1 . . 3
21bicomi 193 . 2
3 sylnbir.2 . 2
42, 3sylnbi 297 1
Colors of variables: wff setvar class
Syntax hints:   wn 3   wi 4   wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  f0cli  5419  ndmov  5616  elovex12  5649  fvmptex  5722  nchoicelem18  6307
  Copyright terms: Public domain W3C validator