![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > sylnbi | Unicode version |
Description: A mixed syllogism inference from a biconditional and an implication. Useful for substituting an antecedent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.) |
Ref | Expression |
---|---|
sylnbi.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
sylnbi.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sylnbi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylnbi.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | notbii 287 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | sylnbi.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | sylbi 187 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: sylnbir 298 reuun2 3539 iotanul 4355 ndmfv 5350 ndmovcom 5618 fvfullfun 5865 |
Copyright terms: Public domain | W3C validator |