NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sylnbir GIF version

Theorem sylnbir 298
Description: A mixed syllogism inference from a biconditional and an implication. (Contributed by Wolf Lammen, 16-Dec-2013.)
Hypotheses
Ref Expression
sylnbir.1 (ψφ)
sylnbir.2 ψχ)
Assertion
Ref Expression
sylnbir φχ)

Proof of Theorem sylnbir
StepHypRef Expression
1 sylnbir.1 . . 3 (ψφ)
21bicomi 193 . 2 (φψ)
3 sylnbir.2 . 2 ψχ)
42, 3sylnbi 297 1 φχ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  f0cli  5419  ndmov  5616  elovex12  5649  fvmptex  5722  nchoicelem18  6307
  Copyright terms: Public domain W3C validator