New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > uniss2 | GIF version |
Description: A subclass condition on the members of two classes that implies a subclass relation on their unions. Proposition 8.6 of [TakeutiZaring] p. 59. See iunss2 4012 for a generalization to indexed unions. (Contributed by NM, 22-Mar-2004.) |
Ref | Expression |
---|---|
uniss2 | ⊢ (∀x ∈ A ∃y ∈ B x ⊆ y → ∪A ⊆ ∪B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssuni 3914 | . . . . 5 ⊢ ((x ⊆ y ∧ y ∈ B) → x ⊆ ∪B) | |
2 | 1 | expcom 424 | . . . 4 ⊢ (y ∈ B → (x ⊆ y → x ⊆ ∪B)) |
3 | 2 | rexlimiv 2733 | . . 3 ⊢ (∃y ∈ B x ⊆ y → x ⊆ ∪B) |
4 | 3 | ralimi 2690 | . 2 ⊢ (∀x ∈ A ∃y ∈ B x ⊆ y → ∀x ∈ A x ⊆ ∪B) |
5 | unissb 3922 | . 2 ⊢ (∪A ⊆ ∪B ↔ ∀x ∈ A x ⊆ ∪B) | |
6 | 4, 5 | sylibr 203 | 1 ⊢ (∀x ∈ A ∃y ∈ B x ⊆ y → ∪A ⊆ ∪B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1710 ∀wral 2615 ∃wrex 2616 ⊆ wss 3258 ∪cuni 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-uni 3893 |
This theorem is referenced by: unidif 3924 |
Copyright terms: Public domain | W3C validator |