| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > unissint | Unicode version | ||
| Description: If the union of a class is included in its intersection, the class is either the empty set or a singleton (uniintsn 3964). (Contributed by NM, 30-Oct-2010.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) | 
| Ref | Expression | 
|---|---|
| unissint | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl 443 | 
. . . . 5
 | |
| 2 | df-ne 2519 | 
. . . . . . 7
 | |
| 3 | intssuni 3949 | 
. . . . . . 7
 | |
| 4 | 2, 3 | sylbir 204 | 
. . . . . 6
 | 
| 5 | 4 | adantl 452 | 
. . . . 5
 | 
| 6 | 1, 5 | eqssd 3290 | 
. . . 4
 | 
| 7 | 6 | ex 423 | 
. . 3
 | 
| 8 | 7 | orrd 367 | 
. 2
 | 
| 9 | ssv 3292 | 
. . . . 5
 | |
| 10 | int0 3941 | 
. . . . 5
 | |
| 11 | 9, 10 | sseqtr4i 3305 | 
. . . 4
 | 
| 12 | inteq 3930 | 
. . . 4
 | |
| 13 | 11, 12 | syl5sseqr 3321 | 
. . 3
 | 
| 14 | eqimss 3324 | 
. . 3
 | |
| 15 | 13, 14 | jaoi 368 | 
. 2
 | 
| 16 | 8, 15 | impbii 180 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-ss 3260 df-nul 3552 df-uni 3893 df-int 3928 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |