New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > intssuni | Unicode version |
Description: The intersection of a nonempty set is a subclass of its union. (Contributed by NM, 29-Jul-2006.) |
Ref | Expression |
---|---|
intssuni |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.2z 3640 | . . . 4 | |
2 | 1 | ex 423 | . . 3 |
3 | vex 2863 | . . . 4 | |
4 | 3 | elint2 3934 | . . 3 |
5 | eluni2 3896 | . . 3 | |
6 | 2, 4, 5 | 3imtr4g 261 | . 2 |
7 | 6 | ssrdv 3279 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wcel 1710 wne 2517 wral 2615 wrex 2616 wss 3258 c0 3551 cuni 3892 cint 3927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-ss 3260 df-nul 3552 df-uni 3893 df-int 3928 |
This theorem is referenced by: unissint 3951 intssuni2 3952 |
Copyright terms: Public domain | W3C validator |