New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  xp0r Unicode version

Theorem xp0r 4842
 Description: The cross product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
xp0r

Proof of Theorem xp0r
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp 4801 . . 3
2 noel 3554 . . . . . . 7
3 simprl 732 . . . . . . 7
42, 3mto 167 . . . . . 6
54nex 1555 . . . . 5
65nex 1555 . . . 4
7 noel 3554 . . . 4
86, 72false 339 . . 3
91, 8bitri 240 . 2
109eqriv 2350 1
 Colors of variables: wff setvar class Syntax hints:   wa 358  wex 1541   wceq 1642   wcel 1710  c0 3550  cop 4561   cxp 4770 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-addc 4378  df-nnc 4379  df-phi 4565  df-op 4566  df-opab 4623  df-xp 4784 This theorem is referenced by:  dmxpid  4924  res0  4977  xp0  5044  xpnz  5045  xpdisj1  5047  xpcan2  5058
 Copyright terms: Public domain W3C validator