New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > xp0r | GIF version |
Description: The cross product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
xp0r | ⊢ (∅ × A) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp 4802 | . . 3 ⊢ (z ∈ (∅ × A) ↔ ∃x∃y(z = 〈x, y〉 ∧ (x ∈ ∅ ∧ y ∈ A))) | |
2 | noel 3555 | . . . . . . 7 ⊢ ¬ x ∈ ∅ | |
3 | simprl 732 | . . . . . . 7 ⊢ ((z = 〈x, y〉 ∧ (x ∈ ∅ ∧ y ∈ A)) → x ∈ ∅) | |
4 | 2, 3 | mto 167 | . . . . . 6 ⊢ ¬ (z = 〈x, y〉 ∧ (x ∈ ∅ ∧ y ∈ A)) |
5 | 4 | nex 1555 | . . . . 5 ⊢ ¬ ∃y(z = 〈x, y〉 ∧ (x ∈ ∅ ∧ y ∈ A)) |
6 | 5 | nex 1555 | . . . 4 ⊢ ¬ ∃x∃y(z = 〈x, y〉 ∧ (x ∈ ∅ ∧ y ∈ A)) |
7 | noel 3555 | . . . 4 ⊢ ¬ z ∈ ∅ | |
8 | 6, 7 | 2false 339 | . . 3 ⊢ (∃x∃y(z = 〈x, y〉 ∧ (x ∈ ∅ ∧ y ∈ A)) ↔ z ∈ ∅) |
9 | 1, 8 | bitri 240 | . 2 ⊢ (z ∈ (∅ × A) ↔ z ∈ ∅) |
10 | 9 | eqriv 2350 | 1 ⊢ (∅ × A) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ∅c0 3551 〈cop 4562 × cxp 4771 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-addc 4379 df-nnc 4380 df-phi 4566 df-op 4567 df-opab 4624 df-xp 4785 |
This theorem is referenced by: dmxpid 4925 res0 4978 xp0 5045 xpnz 5046 xpdisj1 5048 xpcan2 5059 |
Copyright terms: Public domain | W3C validator |