New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 19.40-2 | GIF version |
Description: Theorem *11.42 in [WhiteheadRussell] p. 163. Theorem 19.40 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
Ref | Expression |
---|---|
19.40-2 | ⊢ (∃x∃y(φ ∧ ψ) → (∃x∃yφ ∧ ∃x∃yψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.40 1609 | . . 3 ⊢ (∃y(φ ∧ ψ) → (∃yφ ∧ ∃yψ)) | |
2 | 1 | eximi 1576 | . 2 ⊢ (∃x∃y(φ ∧ ψ) → ∃x(∃yφ ∧ ∃yψ)) |
3 | 19.40 1609 | . 2 ⊢ (∃x(∃yφ ∧ ∃yψ) → (∃x∃yφ ∧ ∃x∃yψ)) | |
4 | 2, 3 | syl 15 | 1 ⊢ (∃x∃y(φ ∧ ψ) → (∃x∃yφ ∧ ∃x∃yψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |