New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > albiim | GIF version |
Description: Split a biconditional and distribute quantifier. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
albiim | ⊢ (∀x(φ ↔ ψ) ↔ (∀x(φ → ψ) ∧ ∀x(ψ → φ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfbi2 609 | . . 3 ⊢ ((φ ↔ ψ) ↔ ((φ → ψ) ∧ (ψ → φ))) | |
2 | 1 | albii 1566 | . 2 ⊢ (∀x(φ ↔ ψ) ↔ ∀x((φ → ψ) ∧ (ψ → φ))) |
3 | 19.26 1593 | . 2 ⊢ (∀x((φ → ψ) ∧ (ψ → φ)) ↔ (∀x(φ → ψ) ∧ ∀x(ψ → φ))) | |
4 | 2, 3 | bitri 240 | 1 ⊢ (∀x(φ ↔ ψ) ↔ (∀x(φ → ψ) ∧ ∀x(ψ → φ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: 2albiim 1612 equveli 1988 eu1 2225 eqss 3288 |
Copyright terms: Public domain | W3C validator |