NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  albiim GIF version

Theorem albiim 1611
Description: Split a biconditional and distribute quantifier. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
albiim (x(φψ) ↔ (x(φψ) x(ψφ)))

Proof of Theorem albiim
StepHypRef Expression
1 dfbi2 609 . . 3 ((φψ) ↔ ((φψ) (ψφ)))
21albii 1566 . 2 (x(φψ) ↔ x((φψ) (ψφ)))
3 19.26 1593 . 2 (x((φψ) (ψφ)) ↔ (x(φψ) x(ψφ)))
42, 3bitri 240 1 (x(φψ) ↔ (x(φψ) x(ψφ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  2albiim  1612  equveli  1988  eu1  2225  eqss  3288
  Copyright terms: Public domain W3C validator