| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > 19.40 | GIF version | ||
| Description: Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| 19.40 | ⊢ (∃x(φ ∧ ψ) → (∃xφ ∧ ∃xψ)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | exsimpl 1592 | . 2 ⊢ (∃x(φ ∧ ψ) → ∃xφ) | |
| 2 | simpr 447 | . . 3 ⊢ ((φ ∧ ψ) → ψ) | |
| 3 | 2 | eximi 1576 | . 2 ⊢ (∃x(φ ∧ ψ) → ∃xψ) | 
| 4 | 1, 3 | jca 518 | 1 ⊢ (∃x(φ ∧ ψ) → (∃xφ ∧ ∃xψ)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 358 ∃wex 1541 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 | 
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 | 
| This theorem is referenced by: 19.40-2 1610 19.41 1879 exdistrf 1971 uniin 3912 copsexg 4608 dmin 4914 imadif 5172 fv3 5342 | 
| Copyright terms: Public domain | W3C validator |