NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  2alimdv GIF version

Theorem 2alimdv 1623
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 27-Apr-2004.)
Hypothesis
Ref Expression
2alimdv.1 (φ → (ψχ))
Assertion
Ref Expression
2alimdv (φ → (xyψxyχ))
Distinct variable groups:   φ,x   φ,y
Allowed substitution hints:   ψ(x,y)   χ(x,y)

Proof of Theorem 2alimdv
StepHypRef Expression
1 2alimdv.1 . . 3 (φ → (ψχ))
21alimdv 1621 . 2 (φ → (yψyχ))
32alimdv 1621 1 (φ → (xyψxyχ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-gen 1546  ax-5 1557  ax-17 1616
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator