New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eximdv | GIF version |
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
alimdv.1 | ⊢ (φ → (ψ → χ)) |
Ref | Expression |
---|---|
eximdv | ⊢ (φ → (∃xψ → ∃xχ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1616 | . 2 ⊢ (φ → ∀xφ) | |
2 | alimdv.1 | . 2 ⊢ (φ → (ψ → χ)) | |
3 | 1, 2 | eximdh 1588 | 1 ⊢ (φ → (∃xψ → ∃xχ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 |
This theorem depends on definitions: df-bi 177 df-ex 1542 |
This theorem is referenced by: 2eximdv 1624 exlimdv 1636 ax12olem2 1928 moim 2250 morimv 2252 reximdv2 2724 cgsexg 2891 spc3egv 2944 euind 3024 ssel 3268 reupick 3540 reximdva0 3562 uniss 3913 nnpw1ex 4485 coss1 4873 coss2 4874 dmss 4907 dmcosseq 4974 funssres 5145 fv3 5342 dffo4 5424 dffo5 5425 fvclss 5463 mapsn 6027 ncspw1eu 6160 taddc 6230 fnfreclem3 6320 |
Copyright terms: Public domain | W3C validator |