New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 2eximdv | GIF version |
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 3-Aug-1995.) |
Ref | Expression |
---|---|
2alimdv.1 | ⊢ (φ → (ψ → χ)) |
Ref | Expression |
---|---|
2eximdv | ⊢ (φ → (∃x∃yψ → ∃x∃yχ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2alimdv.1 | . . 3 ⊢ (φ → (ψ → χ)) | |
2 | 1 | eximdv 1622 | . 2 ⊢ (φ → (∃yψ → ∃yχ)) |
3 | 2 | eximdv 1622 | 1 ⊢ (φ → (∃x∃yψ → ∃x∃yχ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 |
This theorem depends on definitions: df-bi 177 df-ex 1542 |
This theorem is referenced by: cgsex2g 2891 cgsex4g 2892 spc2egv 2941 spc3egv 2943 |
Copyright terms: Public domain | W3C validator |