| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 3adant1l | GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3adant1l.1 | ⊢ ((φ ∧ ψ ∧ χ) → θ) |
| Ref | Expression |
|---|---|
| 3adant1l | ⊢ (((τ ∧ φ) ∧ ψ ∧ χ) → θ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3adant1l.1 | . . . 4 ⊢ ((φ ∧ ψ ∧ χ) → θ) | |
| 2 | 1 | 3expb 1152 | . . 3 ⊢ ((φ ∧ (ψ ∧ χ)) → θ) |
| 3 | 2 | adantll 694 | . 2 ⊢ (((τ ∧ φ) ∧ (ψ ∧ χ)) → θ) |
| 4 | 3 | 3impb 1147 | 1 ⊢ (((τ ∧ φ) ∧ ψ ∧ χ) → θ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
| This theorem is referenced by: 3adant2l 1176 3adant3l 1178 |
| Copyright terms: Public domain | W3C validator |