New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3expb | GIF version |
Description: Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((φ ∧ ψ ∧ χ) → θ) |
Ref | Expression |
---|---|
3expb | ⊢ ((φ ∧ (ψ ∧ χ)) → θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((φ ∧ ψ ∧ χ) → θ) | |
2 | 1 | 3exp 1150 | . 2 ⊢ (φ → (ψ → (χ → θ))) |
3 | 2 | imp32 422 | 1 ⊢ ((φ ∧ (ψ ∧ χ)) → θ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: 3adant3r1 1160 3adant3r2 1161 3adant3r3 1162 3adant1l 1174 3adant1r 1175 mp3an1 1264 sfin112 4530 fnfco 5238 fununiq 5518 mpt2eq3dva 5670 peano4nc 6151 |
Copyright terms: Public domain | W3C validator |