New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > adantll | GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
adant2.1 | ⊢ ((φ ∧ ψ) → χ) |
Ref | Expression |
---|---|
adantll | ⊢ (((θ ∧ φ) ∧ ψ) → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 447 | . 2 ⊢ ((θ ∧ φ) → φ) | |
2 | adant2.1 | . 2 ⊢ ((φ ∧ ψ) → χ) | |
3 | 1, 2 | sylan 457 | 1 ⊢ (((θ ∧ φ) ∧ ψ) → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: ad2antlr 707 ad2ant2l 726 ad2ant2lr 728 3ad2antl3 1119 3adant1l 1174 ax11eq 2193 ax11el 2194 nfeud2 2216 ralcom2 2776 reu6 3026 sbc2iegf 3113 sbcralt 3119 phialllem1 4617 imainss 5043 fun11iun 5306 eqfnfv 5393 foco2 5427 fconst2g 5453 isotr 5496 lemuc1 6254 nchoicelem17 6306 |
Copyright terms: Public domain | W3C validator |