NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3impb GIF version

Theorem 3impb 1147
Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.)
Hypothesis
Ref Expression
3impb.1 ((φ (ψ χ)) → θ)
Assertion
Ref Expression
3impb ((φ ψ χ) → θ)

Proof of Theorem 3impb
StepHypRef Expression
1 3impb.1 . . 3 ((φ (ψ χ)) → θ)
21exp32 588 . 2 (φ → (ψ → (χθ)))
323imp 1145 1 ((φ ψ χ) → θ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by:  3adant1l  1174  3adant1r  1175  3impdi  1237  vtocl3gf  2918  rspc2ev  2964  reuss  3537  pw1equn  4332  pw1eqadj  4333  preaddccan2  4456  resdif  5307  fnopovb  5558  fovrn  5605  fnovrn  5608  mucass  6136  addccan2nc  6266  nchoicelem3  6292
  Copyright terms: Public domain W3C validator