New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3impb | GIF version |
Description: Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
3impb.1 | ⊢ ((φ ∧ (ψ ∧ χ)) → θ) |
Ref | Expression |
---|---|
3impb | ⊢ ((φ ∧ ψ ∧ χ) → θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3impb.1 | . . 3 ⊢ ((φ ∧ (ψ ∧ χ)) → θ) | |
2 | 1 | exp32 588 | . 2 ⊢ (φ → (ψ → (χ → θ))) |
3 | 2 | 3imp 1145 | 1 ⊢ ((φ ∧ ψ ∧ χ) → θ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: 3adant1l 1174 3adant1r 1175 3impdi 1237 vtocl3gf 2918 rspc2ev 2964 reuss 3537 pw1equn 4332 pw1eqadj 4333 preaddccan2 4456 resdif 5307 fnopovb 5558 fovrn 5605 fnovrn 5608 mucass 6136 addccan2nc 6266 nchoicelem3 6292 |
Copyright terms: Public domain | W3C validator |