| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 3simpc | GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
| Ref | Expression |
|---|---|
| 3simpc | ⊢ ((φ ∧ ψ ∧ χ) → (ψ ∧ χ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anrot 939 | . 2 ⊢ ((φ ∧ ψ ∧ χ) ↔ (ψ ∧ χ ∧ φ)) | |
| 2 | 3simpa 952 | . 2 ⊢ ((ψ ∧ χ ∧ φ) → (ψ ∧ χ)) | |
| 3 | 1, 2 | sylbi 187 | 1 ⊢ ((φ ∧ ψ ∧ χ) → (ψ ∧ χ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
| This theorem is referenced by: simp3 957 3adant1 973 3adantl1 1111 3adantr1 1114 eupickb 2269 |
| Copyright terms: Public domain | W3C validator |