NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3simpa GIF version

Theorem 3simpa 952
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.)
Assertion
Ref Expression
3simpa ((φ ψ χ) → (φ ψ))

Proof of Theorem 3simpa
StepHypRef Expression
1 df-3an 936 . 2 ((φ ψ χ) ↔ ((φ ψ) χ))
21simplbi 446 1 ((φ ψ χ) → (φ ψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by:  3simpb  953  3simpc  954  simp1  955  simp2  956  3adant3  975  3adantl3  1113  3adantr3  1116  sfintfin  4532  peano4  4557  ovig  5597  ovmpt2x  5712  ce0nnulb  6182  fce  6188
  Copyright terms: Public domain W3C validator