New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3anbi1i | GIF version |
Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi1i.1 | ⊢ (φ ↔ ψ) |
Ref | Expression |
---|---|
3anbi1i | ⊢ ((φ ∧ χ ∧ θ) ↔ (ψ ∧ χ ∧ θ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anbi1i.1 | . 2 ⊢ (φ ↔ ψ) | |
2 | biid 227 | . 2 ⊢ (χ ↔ χ) | |
3 | biid 227 | . 2 ⊢ (θ ↔ θ) | |
4 | 1, 2, 3 | 3anbi123i 1140 | 1 ⊢ ((φ ∧ χ ∧ θ) ↔ (ψ ∧ χ ∧ θ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: brsnsi1 5776 |
Copyright terms: Public domain | W3C validator |